Django as a Mission Planning Tool Interface for the
CYGNSS Mission

Tim Ewing
Southwest Research Institute
1050 Walnut St, Suite 300
Boulder, CO 80302
tim_ewing @boulder.swri.edu

Richard Medina
Southwest Research Institute
1050 Walnut St, Suite 300
Boulder, CO 80302
medina @boulder.swri.edu

Abstract—The successful operation of spacecraft requires care-
ful planning. Each mission comes with a unique set of chal-
lenges that must be met by tools and techniques developed on
a mission-specific basis. In the past, these tools have been
created as Command Line Interfaces (CLIs), Remote Command
Line Interfaces (Remote CLIs), or Graphical User Interfaces
(GUlIs). This paper presents a method for the development of
these custom tools implemented for the mission planning of the
CYGNSS (Cyclone Global Navigation Space System) mission:
using the Django web framework to act as a remote Graphical
User Interface.

CYGNSS, the NASA Earth Venture Class mission which
launched in late 2016, is a constellation of eight microsatellites in
low Earth orbit which perform ocean wind speed measurements
using reflected GPS signals to aid in weather modeling. Several
tools have been developed to aid in the extensive and ongoing
workload in mission planning. Now operating in the extended
mission phase, the CYGNSS team is small. However, each team-
member works on several projects aside from CYGNSS and
performs the necessary mission planning and operations from
their individual computer. Since, when using traditional tools,
each operator’s computer generally has a different combination
of hardware, software, and operating system, developers are
often required to perform custom installation and debugging for
each new user of the system. This results in a system which is
prone to user-specific bugs, and is not suitable for the low-cost
environment in which CYGNSS operates.

We present a method which alleviates these problems. We use
Django, a Python-based website framework, to host a suite of
mission planning tools on a local website. This framework is
split into three components: the Object Relational Mapping
(ORM), the Template, and the View. The Django ORM is
used to access the backend database from Python. Django
Templates are used to control how the tool is displayed to the end
user. Django Views tie the previous two components together
by taking a request from the user, retrieving data from the
database, rendering a template using that data, and returning
the rendered template to the user where it is displayed by a web
browser. We show how each of these components is used and the
benefits of using such a web based system over a traditional tool.

978-1-7281-7436-5/21/$31.00 ©2021 IEEE

Jillian Redfern
Southwest Research Institute
1050 Walnut St, Suite 300
Boulder, CO 80302
jillian.redfern @swri.org

Amanda Alexander
Southwest Research Institute
1050 Walnut St, Suite 300
Boulder, CO 80302
alexander @boulder.swri.edu

Emma Birath
Southwest Research Institute
1050 Walnut St, Suite 300
Boulder, CO 80302
emma.birath@swri.org

TABLE OF CONTENTS

1. BACKGROUND t.uttiuerenerenacesnceanscenssensennns 1
2. TRADITIONAL TOOLS FOR MISSION PLANNING ...2
3. DJANGO AS A WEB BASED TOOL FRAMEWORK....3

4. DJANGOAND CYGNSS iiiiiiiiiiiiiiinteneencnnns 5
5. CONCLUSION .1tttieteneeeeeceeescesacessscsnscannans 5
BIOGRAPHY ..vvineenneeeneeeeoeeencesacesoscenscannnes 6

1. BACKGROUND
The CYGNSS Mission

CYGNSS is a constellation of 8 microsatellites in low Earth
orbit. Each satellite is approximately two meters long across
the solar panels (Figure 1). Although the satellites lack
thrusters, they are able to change position in orbit relative to
each other by performing a high drag maneuver where the
broad side of the solar panels is rotated to face prograde,
slowly lowering the orbit. Each satellite contains a Delay
Doppler Mapping Instrument (DDMI): a set of sensitive
antennae that track ocean wind speeds (Figure 1) through
the scattering of GPS signals reflected off the surface of the
ocean. Communication with the satellites is not constant;
the satellites can only downlink data to the ground when
visible from one of three Swedish Space Corporation (SSC)
ground stations located in central Chile, western Australia,
and Hawaii.

The vast majority of the mission planning for CYGNSS is
in support of nominal data downlinks. During each approxi-
mately 10-minute ground station overpass (hereafter referred
to as a ‘pass’), automated software in the Mission Operations
Center (MOC) checks the status of the spacecraft, downlinks
the most recent 24 hours of recorded data, and replays any
data missing from previous passes.

We nominally plan passes four weeks in advance in 7-day
increments. These passes are are generally not staffed by
flight controllers. Occasionally, however, the science team
will request additional data or a spacecraft will enter safe-
mode, usually due to a radiation strike in the South Atlantic
Anomaly (SAA) (2). These events require additional mission
planning on short notice and must be staffed by a flight
controller.

The CYGNSS MOC is located within Southwest Research
Institute’s Planetary Science Directorate in Boulder, Col-
orado. It is staffed by six personnel, none of whom work

= o

- e A -,‘; _. 1 o ".-_.:_ '&t &
Figure 1. Computer rendering of a deployed CYGNSS satellite.

pomwhsind GAIN=0 ——filename;cyg0® cdmi 5201 702 14- 00000062301 70214210454 11 pawar-bres a1 .00

35

an

25

20

[mis]

15

0

= 1 = =1]

iz i) R

Figure 2. Example of CYGNSS data (1).

exclusively on CYGNSS. As such, the majority of CYGNSS
operations must be automated. Staff are alerted by an au-
tomated system when faults occur on the spacecraft so that
contingency operations can be executed, but for standard
operations data playback and processing is managed automat-
ically.

2. TRADITIONAL TOOLS FOR MISSION
PLANNING

Command Line Interfaces

CLIs (Figure 2 are the default form of interface for custom
tools. Every modern programming language has a standard
method for input and output from the command line, so
creating a CLI for a tool is trivial. However, the types of
input and output from these interfaces are limited to text and
very basic graphics. Features as basic as colored text or tables

can require significant work and result in inconsistent visual
results. Further, a graphical interface through the command
line is infeasible; all input must be entered as text, and most
programs only allow user input once as arguments to the
program call. Examples include utilities like grep, date, and
time, all of which are included in most modern unix operating
systems.

Another complication with CLIs is the tedious setups re-
quired per user. Each operator must install not only the tool,
but for non-compiled languages like Python, must also install
an interpreter and any associated libraries — all of which
are typically version-sensitive. For compiled languages, like
C++, only the installation of the tool is required. However,
this does not necessarily result in less installation overhead
since the tool must be compiled differently for different
software and hardware combinations. For both non-compiled
and compiled languages, each computer must be updated
any time the tool changes. There is also significant learning

tim@cherry: ~
File Edit View Search Terminal Help
tim@cherry:~$ python --help
usage: python3 [option] ... [-c cmd | -m mod | file | -] [arg] ..
options and arguments (and corresponding envirenment variables):
-b : issue warnings about str(bytes_1instance), str(bytearray_instance)
and comparing bytes/bytearray with str. (-bb: issue errors)
: don't write .pyc files on import; also PYTHONDONTWRITEBYTECODE=X
: program passed in as string (terminates option list)
: debug output from parser; also PYTHONDEBUG=x
: ignore PYTHON* environment variables (such as PYTHONPATH)
: print this help message and exit (also --help)
: inspect interactively after running script; forces a prompt even
if stdin does not appear to be a terminal; also PYTHONINSPECT=x

: isolate Python from the user's environment (implies -E and -s)
: run library module as a script (terminates option list)

: remove assert and __debug__-dependent statements; add .opt-1 before
.pyc extension; also PYTHONOPTIMIZE=x

: do -0 changes and also discard docstrings; add .opt-2 before
.pyc extension

: don't print version and copyright messages on interactive startup

: don't add user site directory to sys.path; also PYTHONNOUSERSITE

: don't imply 'import site' on initialization

: force the binary I/0 layers of stdout and stderr to be unbuffered;
stdin is always buffered; text I/0 layer will be line-buffered;
also PYTHONUNBUFFERED=x

Figure 3. The result of the ‘python —help‘ command,
typical of a CLI

tim@cherry: ~

File Edit View Search Terminal Help

n prompt. The s
m (press the space-bar tc paqe down T
goal at this point is to explain how to look-up an object, the main thing
to learn about using Herizens.

There are two categories of objects in Herizons to look-up, "small-bodies"

and "major-bodies”:

o @ red in the asteroid and comet database as initial
for numeric integration.
. everything el
ynamical points (such as L4
be:en numerically integrated :nd the result
- b; Horizons.

;pa1ELr:Tt, natural are11tt~a.

ed in files to t»

The syntax for a look-up is slightly different for these categories.

Small-body searches are triggered by including a semi-colon in the look-up
which can include a list of parameter fields to match on.

| = Scroll & Page: space, <cr>, <bzack, OR arrow keys. <g> ends display. » 15%

Figure 4. The TELNET Remote Command Line
Interface for JPL’s small body SPK generator (6).

required for each user. A basic understanding of the terminal
commands is critical and can be expected from technical
users like developers. However, many users may find the
terminal interface unwieldy and may have difficulty learning
to use the tool.

Remote Command Line Interfaces

Remote CLIs (Figure 2) are standard CLIs that have been set
up on an external server which is accessible through SSH,
TELNET, or a similar alternative. Many of the benefits of a
CLI are retained with Remote CLIs. Generally, a program
is able to accept user input in the same way as if it were
a local CLI. A user establishes a connection with a remote
machine allowing input to be sent to the remote machine and
the response displays within the user’s terminal. The rest of
the user interface is the same; all input is via text commands
and often input is only accepted once at the beginning when
calling a program.

Although Remote CLIs alleviate some of the setup for each
user, they do not fully solve the problems with a command
line-based tool. The central nature of the codebase allows
easier management of tool versions since only a single ma-
chine must be updated when the tool changes. However, the
requirement for technical expertise is not resolved. Users
must still be familiar with a terminal, and will still be limited
to purely text-based input and output from the tool. Remote
CLIs also raise new problems with file manipulation. With

e ey [=

L il Gl et b
e e e g = = 4

Figure 5. GUI for MAPS, a mission planning tool for
KOMPSAT-I (5), a low earth orbit remote-sensing
satellite comparable to CYGNSS.

a standard CLI, the tool will have access to the filesystem of
the user by default. However, with a Remote CLI, there is
extra work required using a protocol such as SFTP (SSH File
Transfer Protocol) or FTPS (File Transfer Protocol for SSL).
There are also inconsistencies within the tools for accessing
Remote CLIs. Functionality that users are used to, such
as copy-paste and scrolling, often break when accessing a
remote terminal due to inconsistent standards or implemen-
tations of protocols.

Graphical User Interfaces

Traditionally, when a tool needs to be used by a wider
audience, developers create a Graphical User Interface (GUI)
(Figure 2). This is a custom interface that uses both mouse
and keyboard input to create a more natural user experience.
The output of the program is generally interactive, allow-
ing the user to see in real-time the results of their actions.
Some examples of programs with GUIs include file explorers,
Adobe Photoshop, and the Microsoft Office suite.

GUIs are powerful alternatives to CLIs. Patterns in data
which are hard to discern when using a text-based interface
are made more apparent when the data is displayed visually.
For example, the periodic nature of the data displayed in the
right side of Figure 6 would not be obvious when listed as a
series of numbers on a command line. Moreover, GUIs have
a much shallower learning curve. Users familiar with the use
of a computer should have little trouble making inferences
about how a GUI operates when implemented correctly.

However, GUIs still have some disadvantages. Often, instal-
lation comes with many headaches for developers. Graphics
libraries are not well standardized, often leading to the need
for platform-specific fixes for each user. Sometimes, the
libraries are unavailable on other operating systems, leading
to even further problems for developers. These tools can
also require access to data stored on external servers, forcing
the need to develop an access control scheme. Finally, the
implementation of user and password management is not
trivial and mistakes have severe security implications.

3. DJANGO AS A WEB BASED TooL
FRAMEWORK

What Is Django?

Django is a Python-based web framework used to create
websites and is designed to allow for the rapid development
of modern web applications. It includes a built-in backend
database with ORM to facilitate fast and flexible database
management. This database interface includes built-in user

szl Datasets User Input TEMPLATE

Iy ry

¥ v

VIEW A
Create, Update, Delete Data for Display

Figure 6. Django MVC data flow diagram.

and password management, allowing developers to bypass
the time-intensive and difficult task of creating a secure user
management system. The database can also be managed
through the Django Admin interface, a web-based database
viewing and managing tool. Django includes a test server
which allows developers to get a working website running
within the first hour of starting a new Django project. Modern
website development styles can be easily applied since the
tools are being developed on a web platform, and standard
tools such as Jquery and Bootstrap can be easily integrated
to give the tool a modern feel with minimal effort. These
features are all well-documented by Django and a large online
community exists to help solve any problems that arise.

The Django Framework

The Django architecture can be loosely compared to a stan-
dard Model-View-Controller (MVC) framework. Under the
standard architecture, the Model is responsible for communi-
cation between the developer’s code and the database. The
View is a collection of HTML templates that are later ren-
dered; each template is a standard HTML file with placehold-
ers for data that needs to be filled in by the Controller. Finally,
the controller connects the View and the Model; when a page
is requested, the user’s data is passed to the Controller from
the server, the Controller uses data from the Model to render
a View, and the rendered view is passed back to the server to
be displayed to the user.

Django’s alternative to the standard MVC framework consists
of three comparable components (Figure 3). The Django
ORM is the equivalent to the Model in a standard framework.
It abstracts the actual creation of database tables by represent-
ing them with Python code. Django uses HTML templates
and a templating engine as its version of the View. It supports
both a built-in Django template engine and Jinja2. Finally,
Django adopts Python functions as the Controller. Each
function written by the developer is called with a Django
request object as an argument by the Django server and must
return a Django HTTPResponse object. Confusingly, the
functions for the Django controller are usually stored in the
file ‘views.py’.

The Django ORM

The Django ORM is a system that allows developers to create
and manage a database using Python classes. Each table in
the database is represented by a Python class and each column
in the table is represented by a field in the class. New objects
can be added to the database by creating an instance of the
class, assigning values to the fields, and calling the save()
method. Django handles the conversion of standard Python
types to data that can be stored in the database, so developers

{% for some_item in some_list %}
<td> This is {{ some_item }}.</td>
{% endfor %}

Figure 7. A Django template segment before rendering.

<td> This is one.</td>
<td> This is two.</td>
<td> This is three.</td>
<td> This is four.</td>
<td> This is five.</td>

Figure 8. A Django template segment after rendering.

are able to write code generically and switch between specific
backends later. Official support is provided for PostgreSQL,
MySQL, SQLite, and Oracle databases. Changes in the
structure of the database are tracked by migrations, allowing
developers to preserve data when changing the backend.
Models are usually stored in the file ‘models.py’.

Django Templates

Django templates inform the program how to display data to
the end user. The templates are standard HTML files with
placeholders for any field that needs to be passed in by the
Controller. Developers have the ability to use loops and
conditionals to change how data is displayed on the screen for
the user which eliminates repetition in the HTML templates
leading to more readable code. Developers can replace large
chunks of repetitive HTML with a single loop (Figures 3 and
3). Django also allows developers to use and create filters
for data passed into templates. For example, replacing name
with name—Ilower would result in the name variable being
input in lowercase. Django also has built in support for Jinja2,
an alternative Python templating engine (4).

Django Views

The Controller in Django is confusingly represented by
Django Views. A View in Django is a Python function which
is passed as a request object by the server and must return
a Django HTTPResponse. Views have access to Django
Models in order to retrieve the data required to fill in a Django
template. Queries are performed on the database using the
function ModelName.objects.filter, where ModelName is the
name of the Django Model in models.py. Once a query has
been performed, developers can iterate over and select from
the resulting QuerySet using standard Python code, treating
the QuerySet as if it were an ordinary list. The retrieved
data is then used to construct a context (a standard Python
dictionary). Each key in the dictionary must correspond to a
variable within the template and the dictionary value must
contain the renderable value. Then, the template must be
rendered by the View. This can be done many ways, all of
which are well explain in the Django documentation.

Admin Interface

Django includes an interface for managing the backend of the
server (e.g. create, edit, delete database entries) without using
the command line. The interface is accessed by navigating
a web browser to website.com/admin where website is the
URL of the server. For the demo server, this is typically
localhost:8000.

Salelite Canstellation Information: Requests

E— o T

[[sy
Ca— CE— Er——
- - -
- - -
Ca— Ca
C— C— Cn

1068 | 13640 | 13004 | 1650 [s |

st | ssua | saa |

28 woc REqUES 1203 | 12 | mm| |

Figure 9. The CYGNSS Gantt Chart Interface.

Satellite 2B, Buffer SCI_STORED_DDM

[

Usage [ME]

200 4

q [HC1_STORED DOM—
HuTor Ful ==
0 o |70 Usage

1 T T
12113 12110 1213 122 1228
Dale

Figure 10. The CYGNSS Resource Tracker showing the
science buffer for satellite ‘2B’. Each dip in the sawtooth
corresponds to data playback during a ground station
overpass.

User Management

The Django backend includes a system for managing users
and their passwords. This system is an especially useful
part of the Django framework. Securely storing passwords
is a difficult problem. In Django, passwords are stored
securely according to modern best practices (3) and the type
of encryption algorithm used can be easily changed. Plaintext
passwords are never stored in the database. Logging in a user
is trivial as the developer only needs to make a login page
template, store it in the correct folder on the server and link it
to the built-in Django View.

4. DJANGO AND CYGNSS

CYGNSS utilizes Django to create high-quality tools for
mission planning. Two of these tools, ‘Gantt Charts’ and the
‘Resource Tracker’, are presented below.

Gantt Charts

Gantt Charts are time-ordered charts that represent the sched-
ule of a project or series of events. We use Gantt Charts to
plan ground station contacts for CYGNSS to ensure that there

is no overlap with other existing contacts or planned activities
(Figure 4). These charts are fully interactive: as a user hovers
over a specific task, additional task information is displayed
and the tasks can be directly edited via a separate dialogue
that appears upon clicking the task. The visual nature of this
tool allows users to quickly ensure that no tasks conflict.

Resource Tracker

The Resource Tracker informs users about resource usage on
the spacecraft based on previously-downlinked data. Several
values can be monitored, but the spacecraft battery state and
data buffers are used most frequently. Figure 4 depicts an
example of the graphs produced by the Resource Tracker.
Fully interactive, the exact value at a given point on the graph
is given when hovered over and clicking will open a separate
page depending on which resource is being tracked.

S. CONCLUSION

The development of high-quality tools that can be quickly
developed is critical to the ongoing operations of spacecraft
missions. These tools now need to be made more accessible
to less technical users. Traditionally, command line tools
or custom graphical tools have been developed. However,
command line tools require a high level of expertise and
graphical tools are difficult to develop and often come with
problems when deployed to various different machines. Our
method, using the Django web framework, we develop web-
based applications for CYGNSS-specific mission planning
tasks which alleviates the issues described as well as reduces
the work required to implement many common features.
Django is widely used, open-source, and well documented—
and should be the focus for developing future mission plan-
ning software for large, distributed teams.

REFERENCES : Emma Birath received her M.S. in
| Physics from Colorado State Univer-
ey sity in 2000, after which she joined the
Imaging Science Subsystem team on the

d Cassini mission, as a sequencer and tool

[1] https://www.nasa.gov/feature/nasa-s-cygnss-satellite-
constellation-enters-science-operations-phase
[2] https://heasarc.gsfc.nasa.gov/docs/rosat/gallery/misc

_saad.html W developer. Today she is a Science Op-
[3] https://docs.djangoproject.com/en/2.2/topics/auth/pas erations Analyst for the New Horizons
swords/ " mission to Pluto and the Kuiper Belt.

[4] https://jinja.palletsprojects.com/en/2.10.x/ v Emma is also the Deputy Mission Op-

[5] Won, C.-H., Lee, J.-S., Lee, B.-S. and Eun, J.-W. L erations Manager on the CYGNSS mis-
(1999), Mission Analysis and Planning System for Ko- sion (Cyclone Global Navigation Satellite System), where
rea Multipurpose Satellite-I. ETRI Journal, 21: 29-40. she oversees daily operations for the eight Earth orbiting
doi:10.4218/etrij.99.0199.0305 satellites.

[6] https://ssd.jpl.nasa.gov/Thorizons#telnet

BIOGRAPHY

Tim Ewing is an undergraduate study-
ing Engineering Physics at the Univer-
sity of Colorado Boulder. He has worked
to develop autonomous snow-clearing
robots at Left Hand Robotics, and is
currently a part-time Flight Controller
R and software developer at Southwest Re-
search Institute for CYGNSS and LUCY
in Boulder, Colorado.

Jillian Redfern received a Bachelor
of Science in applied mathematics from
the University of Colorado at Boulder
in 2001. She studied aerospace en-
gineering at Massachusetts Institute of
Technology. She currently serves as the
Missions Operations Manager (MOM)
for the NASA CYGNSS mission. She is a
Section Manager at Southwest Research
Institute in Boulder, Colorado.

Amanda Alexander is an Analyst at
Southwest Research Institute. She has
been involved with the NASA CYGNSS
mission since 2017 as a flight controller
and mission planner. Amanda is also
a Student Collaborator for the NASA
Psyche mission and studies impacts into
small bodies like Asteroid (16) Psyche.
She received a B.A. in Astrophysical and
Planetary Sciences at the University of
Colorado Boulder in 2018 and is now a PhD Student in the
department of Geological Sciences.

Richard Medina is a Senior Research
Analyst at Southwest Research Institute
44 in Boulder, Colorado. He has 10 years
of space operations experience in re-
. mote sensing missions ranging from low
earth orbit to deep space. He is cur-
rently a mission planner for the NASA
CYGNSS (Cyclone Global Navigation
Satellite System) mission as well as a
software developer for the CYGNSS and
Lucy missions. He received a Bachelor’s of Science in
Physics from the United States Air Force Academy in 2008.

